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Abstract
In the compound CeRh3B2, a rather special polarization of the conduction
electrons along thec-chains of cerium atoms had been previously reported at low
temperatures (Alonso et al 1998 J. Magn. Magn. Mater. 177–181 1048). The
distribution of the CeRh3B2 magnetization has now been studied as a function
of temperature up to 150 K—that is, above the Curie temperature of 115 K.
The magnetization density maps have been obtained from polarized neutron
diffraction experiments by using the maximum entropy method. The cerium
form factor has also been analysed. Calculations of the form factor including
several multiplets are developed and it is shown that it is necessary to take into
account the influence of the higher multiplet of the Ce3+ ion. This result is
coherent with the observation of a peak at high energy in the inelastic neutron
spectra, indicating a very large crystal electric field splitting. Both analyses
lead to the same conclusion that, on heating, the diffuse negative magnetization
observed at low temperature along the cerium chains disappears at the magnetic
ordering temperature. The influence of the second multiplet of the Ce3+ ion
could be part of the explanation for the low value of the 4f moment and the
large Curie temperature in CeRh3B2.

1. Introduction

The ternary cerium boride CeRh3B2 shows ferromagnetic ordering with an unusually high
Curie temperature, Tc = 115 K [1]. It is by far the highest magnetic ordering temperature of
any cerium compound with non-magnetic elements. The isostructural compound GdRh3B2 has
a Curie temperature of 93 K and a simple de Gennes scaling would lead to a Curie temperature
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Figure 1. The crystallographic structure of CeRh3B2 and its projection on a plane perpendicular
to the a-direction of the hexagonal structure.

(This figure is in colour only in the electronic version)

value of ≈1 K for CeRh3B2—that is, two orders of magnitude lower than the real value. Its
magnetic properties are highly anisotropic. The easy magnetization is within the c-plane and
the saturation magnetization is only 0.4 µB/formula unit, a value which is strongly reduced
compared to the cerium free ion value (2.14 µB). The magnetization along the hard c-axis is
about five times less than that along the easy direction. From measurements performed in the
paramagnetic state up to 800 K [2, 3], it is found that the magnetic susceptibility follows a
Curie–Weiss law only above 600 K.

CeRh3B2 crystallizes in the hexagonal CeCo3B2-type structure (figure 1). Rhodium atoms
lie in planes at z = 1/2, whereas the boron and the cerium atoms are in the basal plane.
There is only one site of cerium atoms, located at the origin of the cell (point symmetry
6/mmm). Along the c-axis, they form chains with very short Ce–Ce distances (3.04 Å),
much shorter than in the c-plane (5.48 Å). This feature was invoked as lying the origin of the
anomalous magnetic properties, especially those leading to hybridization between cerium 4f
and conduction electrons and to strong crystal electric field effects [4, 5]. This last property has
been confirmed by inelastic neutron spectroscopy measurements performed with high incident
energy at ISIS (UK). The observed transition corresponds to a crystal field splitting of the
order of 2000 K [6], a value which is not negligible when compared to the difference between
the cerium ground multiplet J = 5/2 and the excited multiplet J ′ = 7/2 lying at around
3250 K [7]. Contributions from the excited multiplet can then be present in the wavefunctions
of all energy levels, even the fundamental one.

A polarized neutron diffraction study [8], performed at T = 7 K in the ferromagnetic state
indicated localization of the magnetization density and confirmed the anisotropic character of
the magnetic properties. The magnetization at low temperature is distributed as follows:

(i) no magnetization on the rhodium and boron sites;
(ii) a 4f-type moment, with a definite asymmetry, localized on the cerium site; and

(iii) a large negative diffuse contribution of 5d type, very anisotropic, lying between the cerium
atoms along the c-chains only.

Because of this negative diffuse contribution, the value of the 4f moment is quite different
from the value of the measured magnetization. It is therefore important to know the thermal
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Table 1. Parameters of the crystal structure of CeRh3B2 at low temperature. The b are the
Fermi lengths and the B the Debye–Waller factors. The absorption coefficient at this wavelength
is µ = 4.0 cm−1. Space group: P6/mmm; a = 5.456 Å, c = 3.037 Å.

Site x y z b (fm) B (Å2)

Ce (1a) 0 0 0 4.84 0.18
Rh (3g) 1/2 0 1/2 5.88 0.12
B (2c) 1/3 2/3 0 6.56 0.18

dependence of this diffuse contribution to deduce the thermal variation of the 4f moment.
Polarized neutron diffraction measurements similar to those at 7 K [8] were undertaken at
various temperatures up to 150 K. Magnetization density maps were obtained and the cerium
4f form factor was calculated. Because of the very large crystal field splitting, the calculation
takes into account the presence of the two cerium multiplets.

2. Experimental details and results

The experiments at different temperatures were performed on the D3 diffractometer at the ILL
(Grenoble, France), at a wavelength λ = 0.852 Å. The magnetic field was applied parallel
to the easy magnetization direction a. Its value was 5 T, except at T = 150 K where it was
increased to 9 T in order to induce a larger moment and get a better precision. The former
experiment (T = 7 K and H = 4.6 T) was performed at the LLB (Saclay, France).

The crystal studied, CeRh3B2, was the same as that already measured in [8]. It was
produced using 99% enriched 11B to avoid the large neutron absorption cross section due to
10B. Its shape is a platelet of 2.0×1.5×3.6 mm3, the first dimension being along the a-direction
and the last one along the c-direction. Its characteristics had already been determined for the
previous study. The values used for the treatment of our data are given in table 1. The extinction
factor g, deduced from polarized neutron diffraction experiments at several wavelengths [8],
is 700(100) rad−1.

Measurements of the flipping ratios R = I +/I − = (1 + γ )2/(1 − γ )2 of the Bragg
reflections hkl yield values of FM(hkl) through γ = FM/FN, where FN and FM are the
nuclear and magnetic structure factors, respectively. The flipping ratios of 30 independent
reflections of type 0kl were measured at four temperatures: 7 K for a rapid check of the
previous results [8], 110 and 120 K around the ordering temperature, and 150 K above the
ordering temperature. The first six reflections at low diffraction angle were also measured
at various intermediate temperatures. In order to take into account the imperfections of the
instrument, appropriate corrections (polarization of the incident beam, flipping efficiency,
λ/2 corrections) were applied and the nuclear structure factors FN were calculated using the
parameters of table 1.

3. Magnetization density maps

The FM(hkl) are the Fourier components of the magnetization density M(r). The projection
of this density on a plane perpendicular to the a-direction was calculated using the 2D
maximum entropy method (MaxEnt) [9]. This method yields the most probable magnetization
distribution map compatible with the measured FM(hkl), taking into account their error
bars. Its main advantage, compared to the classical Fourier inversion, is that it makes no
assumption concerning the unmeasured Fourier components and avoids the oscillations due to
truncation effects. The number of pixels was chosen as 32 × 62 respectively along the [001]
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Figure 2. Left-hand side: projections along the a-direction of the magnetization distribution
obtained with MaxEnt in CeRh3B2. Full/dashed lines correspond to positive/negative contours.
(a) T = 7 K, the separation between the contour lines is 0.045 µB Å−2 for the negative and the
three first positive low contours and 0.450 µB Å−2 around the cerium sites. (b) T = 150 K, the
separation between the contour lines is 0.008 µB Å−2 for the negative and the three first positive
low contours and 0.076 µB Å−2 around the cerium sites. Right-hand side: the projected magnetic
density drawn between two cerium atoms along the [001] and [120] directions. The values are
normalized to the maximum value on the cerium atoms, that is 2.73 µB Å−2 at T = 7 K (a) and
0.417 µB Å−2 at T = 150 K (b).

and [120] directions of the direct space (the [001] and [010] directions of reciprocal space).
The projected maps have thus been obtained at the four temperatures 7, 110, 120 and 150 K.
The FM(000) value is the bulk magnetization measured in the same experimental conditions—
that is, for 0.42(1), 0.25(1), 0.17(1) and 0.087(5) µB, respectively. The field dependence of
the magnetization measured in the paramagnetic state at 150 K up to 10 T is perfectly linear.

The maps obtained for the lowest (T = 7 K [8]) and the highest (T = 150 K) temperatures
are shown in the left-hand side of figure 2. The corresponding projection of the atoms can be
seen in figure 1. At 7 K, in the ferromagnetic state (figure 2(a)), the results are those already
mentioned in the previous study:

(i) no magnetization is found on the rhodium atoms which are located on one unique site (see
the rhodium projected in (1/2, 1/2));

(ii) a 4f-type density is localized on the cerium site; and
(iii) a large negative diffuse contribution is observed between the cerium atoms along the

c-chains only.

At 150 K, in the paramagnetic state, this negative diffuse density has almost disappeared
(figure 2(b)). The density between the cerium atoms is more detailed on the right-hand side
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Figure 3. Comparison of the experimental (full dots) with the calculated (open dots) magnetic
amplitudes µ f at T = 7 K. (a) Calculation with one multiplet J = 5/2; (b) calculation with
two multiplets J = 5/2 and J ′ = 7/2. Calculations were performed using the wavefunction
coefficients.

Table 2. Refined wavefunction coefficients aJ,M from data at T = 7 K. NJ is the number of
multiplets, K0 a scaling factor of the moment, µ4f the calculated 4f moment and µS

4f its spin part.
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K0 µ4f µS
4f χ2

(µB) (µB)

1 0 0.323 0 −0.687 0 0.650
(44) (47)

0 0 0 0 0 0 0 0 0.6 0.58 −0.2 9.4
(1)

2 0 0.207 0 0.570 0 0.656
(100) (40) (48)

0.290 0 0.154 0 −0.197 0 0.235 0 0.66 0.52 −0.3 1.9
(30) (102) (51)

of figure 2 where these densities along the [001] or [120] directions are drawn for the two
temperatures. It is quite clear that at T = 7 K the densities along the two directions are
very different: it is strongly negative along [001] whereas it is around zero along [120]. At
T = 150 K, the density along [001] has strongly decreased whereas the density along [120] is
unchanged.

4. Form factor

The FM(hkl) can be directly analysed in reciprocal space (see figures 3 and 4, plain dots). They
correspond to the sums of two magnetic amplitudes µ f (Q) centred on the cerium site, where
µ is the magnetic moment and f (Q) the associated magnetic form factor for the scattering
vector Q (|Q| = 4π sin θ/λ). One magnetic amplitude is of 4f type and is observed up to
sin θ/λ = 1.0 Å−1. The negative and anisotropic second one, of 5d type, is very delocalized
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and vanishes at sin θ/λ ≈ 0.2 Å−1. Reflections lying above this value are then characteristic
of the 4f contribution only. Therefore, the first three reflections 010, 011 and 020, as well
as 000 given by the macroscopic magnetization, were not used for the refinements of the
4f contribution.

4.1. Calculation using the ground state wavefunction

The 4f cerium magnetic form factor can be calculated (appendix A) from the coefficients aJ M

of the ground state wavefunction:

|ψ〉 =
∑
J M

aJ M |θ J M〉, with
∑
J M

a2
J M = 1.

The number of coefficients aJ M depends on the J multiplet considered, and, as mentioned in
the introduction, the influence of the excited multiplet may be significant. There are six values
associated with the ground multiplet J = 5/2 (−5/2 � M � 5/2) and eight values associated
with the excited multiplet J ′ = 7/2 (−7/2 � M ′ � 7/2). As the magnetic field is applied
along the a-direction, this direction was taken as the quantification axis z for all the calculations
(the c-direction of the hexagonal structure is then the y-axis). z being a twofold axis implies
that only terms corresponding to �M = ±2 will exist [10]. Half of the coefficients aJ M are
then zero:

a 5
2 ,

5
2

= a 5
2 ,

1
2

= a 5
2 ,

3
2

= 0,

a 7
2 ,

5
2

= a 7
2 ,

1
2

= a 7
2 ,

3
2

= a 7
2 ,

7
2

= 0.

For low temperatures (T = 7 K), when only the ground state is occupied, we have written
a program which refines the coefficients aJ M of its wavefunction. A scaling factor K0 is
introduced, which can represent a reduction factor of the moment due to the strong hybridization
effects [11]. This type of refinement leads to a wavefunction fitting the experimental data and
does not need any model describing the state of the system.

A first refinement was tried by considering the ground multiplet J = 5/2 only. There
remain only the three a5/2,M coefficients. The best fit corresponds to χ2 around 9 (χ2 =∑

i pi(µ f obs
i − µ f calc

i )2/(Nobs − Nvar) with pi = 1/σ 2
i ), with a5/2,3/2 and a5/2,−5/2 positive

and a5/2,−1/2 strongly negative (see table 2). The calculated points are plotted in figure 3(a).
Besides the discrepancy for the reflections at low sin θ/λ in which the 5d contribution is present
and which were not used for the refinement anyway, the measured anisotropy is not at all well
accounted for. In particular, the reflections of type 0k2 are calculated to be much lower than
those measured.

The fit is substantially improved if the two multiplets J = 5/2 and J ′ = 7/2 are taken into
account (seven coefficients aJ,M) and is not much altered by the value of K0 (1.6 < χ2 < 1.9).
The results in table 2 are given for a value K0 = 0.66, for coherence with what follows in this
paper. The main change from the preceding calculation is the change of sign of the coefficient
a5/2,−1/2 and the emergence of non-negligible terms a7/2,M ′ . The calculated 4f moment µ4f

(0.52µB) is lower than that obtained with one multiplet (0.58µB) but still definitely larger than
the measured macroscopic magnetization M = 0.42 µB. The agreement between observed
and calculated points (figure 3(b)) is much better for all the reflections and the calculation for
0k2-type reflections is now quite satisfactory.

4.2. Calculation using the Hamiltonian

Another way of performing the calculations consists of a diagonalization of the Hamiltonian
of the system to obtain the wavefunction coefficients of all the energy states. The form factor
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Table 3. Examples of possible crystal field parameters (Bq
k )c fitting the Ce form factor.

Jff = 570 K, (B0
2 )c = −7500 K, (B0

4 )c = 650 K and (B6
6)c = 0. K0 a scaling factor, µ4f

the calculated 4f moment, µS
4f its spin part and M the measured magnetization.

T H (B0
6 )c K0 µ4f µS

4f M M − µ4f χ2

(K) (T) (K) (µB) (µB) (µB) (µB)

7 4.6 −337(14) 0.66(2) 0.50 −0.52 0.42(1) −0.08(1) 2.0
110 5 −331(30) 0.68(1) 0.26 −0.26 0.25(1) −0.01(1) 2.4
120 5 −332(45) 0.68(9) 0.17 −0.18 0.17(1) 0.00(1) 1.7
150 9 −314(34) 0.68(4) 0.082 −0.071 0.087(5) 0.005(5) 1.3
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Figure 4. Comparison of the experimental magnetic amplitudesµ f (full dots) with those calculated
with two multiplets J = 5/2 and J ′ = 7/2 (open dots). (a) At T = 7 K; (b) at T = 150 K.
Calculations were performed using exchange and crystal field parameters given in table 3.

is then calculated for each level and the resulting value is obtained taking into account the level
populations. Such a calculation is necessary for data at high temperatures, when several levels
might be occupied.

The Hamiltonian depends on exchange and crystal field parameters as defined in
appendix B and we have written a program that can refine these parameters from the form
factor data. At the same time, the spin and orbital parts of the moment are calculated. In fact,
all these parameters are strongly correlated and some of them have been fixed. The value of
the exchange parameter Jff was estimated from calculations of the thermal variation of the
magnetization and comparison to the Curie temperature. Calculations with two multiplets and
a value of Jff = 570 K lead to a Curie temperature around 115 K.

There are nine crystal field parameters Bq
k involved in the crystal field Hamiltonian for

the twofold axis a as the quantification axis ((B0
2 )a, (B2

2 )a, (B0
4 )a, (B2

4)a , (B4
4)a , (B0

6 )a , (B2
6 )a ,

(B4
6 )a and (B6

6)a). However, there are only four coefficients ((B0
2 )c, (B0

4 )c, (B0
6 )c and (B6

6 )c) if
the quantification axis is the sixfold axis c. The nine coefficients for z = a are not independent
but are related to the four coefficients for z = c, using the matrix for rotation of spherical
harmonics Y q

k (Wigner formula). The relations are the following:
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(B0
2 )a = −(1/2)(B0

2)c,

(B2
2 )a = −(3/2)(B0

2)c,

(B0
4 )a = (3/8)(B0

4)c,

(B2
4 )a = (5/2)(B0

4)c,

(B4
4 )a = (35/8)(B0

4)c,

(B0
6 )a = (1/16)(−5(B0

6)c + (B6
6 )c),

(B2
6 )a = (1/32)(−105(B0

6)c − 15(B6
6)c),

(B4
6 )a = (1/16)(−63(B0

6)c + 3(B6
6)c),

(B6
6 )a = (1/32)(−231(B0

6)c − (B6
6 )c).

For simplicity, we use the four coefficients (B0
2 )c, (B0

4 )c, (B0
6 )c and (B6

6)c for z = c, and the
program calculates the corresponding nine coefficients for z = a. A possible reduction factor
of the moment K0 is also introduced.

As for the previous calculations, refinements of the data at T = 7 K have been tried first,
by considering the ground multiplet J = 5/2 only ((B0

6 )c = (B6
6)c = 0). No better result

than χ2 � 15 could be found. Calculations with the two multiplets were then undertaken.
The spin–orbit coupling coefficient λ was fixed to 930 K (λ = �/J ′ with � = 3250 K [7]).
We have noticed that there are an infinity of sets of (Bq

k )c parameters which correspond to a
wavefunction close to that given in table 2, and then to good reliability factors χ2 � 2. Data
collected at low temperature (7 K) and at higher temperatures (110, 120 and 150 K) were used
to reduce the number of (Bq

k )c parameter sets. (B0
2 )c has to be negative to get the moment along

the a-direction. Various values of (B0
2 )c were tried as well as compatible values for (B0

4 )c.
(B6

6 )c has almost no influence on the form factor and was therefore fixed to zero. Only (B0
6 )c

and K0 were refined. No solution could be found with K0 = 1 and its value is always found
between 0.6 and 0.7. As an example, figure 4 shows the results obtained at T = 7 and 150 K
for (B0

2 )c = −7500 K, (B0
4)c = 650 K and Jff = 570 K. Table 3 gives the refined parameters

(B0
6 )c and K0 at the four temperatures, together with the corresponding calculated 4f moment

µ4f . These parameters are refined to almost the same values within the error bars and one can
then consider that the set of values (B0

2)c = −7500 K, (B0
4 )c = 650 K, (B0

6 )c = −350 K,
(B6

6 )c = 0, Jff = 570 K and K0 = 0.67 fit our results well. As mentioned above, other
solutions for other values of (B0

2 )c lead after refinement to the same values of χ2 and µ4f . The
determination of the right set of parameters needs data of another type: the treatment of the
inelastic neutron spectroscopy data together with the magnetization and susceptibility thermal
variations are under way and will be published later.

Besides the measurements of complete sets of hkl presented above, the thermal variation
of the six first reflections (010, 011, 020, 021, 030 and 002), which was measured to follow
the polarization temperature dependence, is also very fruitful. This diffuse contribution is
observable only at low sin θ/λ. The experimental values for the reflection 010 (sin θ/λ =
0.106 Å−1) and for the reflection 021 (sin θ/λ = 0.268 Å−1) are compared in figure 5. They
are the sums of the diffuse and 4f localized contributions, and because of the negative character
of the polarization, the values measured for the 010 reflection at low temperature are in fact
below those measured for the 021. The corresponding magnetic amplitudes for the 4f cerium
moment have been calculated with the set of parameters given above and they are also shown
in figure 5. Whereas there is almost no difference between observed and calculated points
for the 021 reflection, a large difference is observed for the 010 reflection. This difference
disappears on warming up to around 115 K, confirming that the polarization vanishes at the
ordering temperature.
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Figure 5. Thermal variation of the magnetic amplitudes µ f of the 010 (circles) and 021 (triangles)
reflections. Full dots are experimental results, open dots are calculated points and lines are guides
for the eye. The data at T = 150 K were obtained in a different magnetic field, H = 9 T instead
of 5 T.

5. Discussion

5.1. Diffuse polarization

Both analyses of the polarized neutron results, in direct or reciprocal space, show that the
strong and negative diffuse magnetic density is present essentially in the ferromagnetic state.

From the magnetization density maps which provide the localization of the projected
density, we find that this diffuse negative density is anisotropic and located mostly along the c-
chains. The map at T = 150 K, in the paramagnetic state, shows that it has strongly decreased.
The mean value of the negative densities between two cerium atoms gives an approximate idea
of the amplitude of the polarization. It is reported in figure 6(a) for the two directions [001]
and [210] (full and open squares, respectively).

From the form factor analysis, we get values of the calculated cerium localized 4f moments
µ4f either from refinements at 7, 110, 120 and 150 K (table 3) or by calculation at various
temperatures between 7 and 150 K with the set of parameters given above ((B0

2 )c = −7500 K,
(B0

4 )c = 650 K, (B0
6 )c = −350 K, (B6

6)c = 0, Jff = 570 K and K0 = 0.67). They are reported
in figure 6(a) and, by comparison with the macroscopic magnetization M , a mean value of
the macroscopic negative polarization (M − µ4f ) can be deduced. The values thus obtained
at different temperatures (crosses) are slightly lower than those along the [001] axis deduced
from the maps (full squares). In fact, they do not match exactly to the same polarization: the
former correspond to a macroscopic polarization in the cell, whereas the latter represent the
mean polarization along one direction. But they are very close and present similar variations,
confirming that the negative polarization of the cell is mostly located along the [001] direction.

The diffuse negative magnetization (M − µ4f ) disappears at the ordering temperature.
In fact, as can be seen in figure 6(b), this polarization presents a linear variation versus the
calculated spin part µS

4f of the 4f moment µ4f , and even becomes positive for very small
values of µS

4f . Because of the uncertainty on measurements of such small moments and on the
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Figure 6. (a) Thermal variation of the measured macroscopic magnetization M (full circles), of the
calculated 4f moment µ4f (open circles) and of the diffuse negative polarization (crosses). Lines
are guides for the eye. Squares are the mean values deduced from the maps between two cerium
atoms in the directions [001] (full dots) and [210] (open dots). The data at T = 150 K were
obtained in a different magnetic field, H = 9 T instead of 5 T. (b) Diffuse negative polarization
versus the spin part of the 4f moment.

parameters used for the calculations, this result has to be treated with great caution. However,
a similar result had already been observed in the 3d nickel metal by Brown et al [12].

5.2. Two-multiplet calculations

The influence of the excited multiplet of the Ce3+ ion is found to be far from negligible.
At T = 7 K, the 4f moment µ4f is smaller when calculated with two multiplets than with
one multiplet (see table 2). The difference from the experimental macroscopic magnetization
M = 0.42 µB, which determines the amplitude of the diffuse polarization, is then lowered by
a factor of 2.

In contrast, the calculated spin contribution µS
4f to the 4f moment is higher with two

multiplets than with one multiplet (see tables 2 and 3). As the exchange interaction

HEx = −2Jff〈S〉S
is related to the value of the spin, the same value of the exchange parameter Jff will lead to
exchange effects that are much more important when the second multiplet is involved. The
important crystal field in CeRh3B2, which implies an influence of the second multiplet, might
be a part of the explanation for the abnormally high ordering temperature of that compound.

Such enhancement of the spin contribution is in agreement with results of magnetic
Compton effect measurements [13, 14] that give the value of the spin moment of the whole
compound. Analysis of the Compton profiles leads in both studies to the conclusion that the
ratio of the orbital to the spin part of the 4f moment −µL

4f/µ
S
4f is abnormally low (between

2.9 [13] and 1.8 [14]), compared to the value of 4 expected from Hund’s rules applied to the
fundamental multiplet of the Ce3+ ion. From our calculations with two multiplets, we find that
µS

4f � −µ4f at all temperatures (see table 3), leading to µL
4f � −2µS

4f . The low value of the
ratio −µL

4f/µ
S
4f then originates from the value of the spin part which is higher than usually

expected for a same value of the total moment µ4f .
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6. Conclusion

This study demonstrates the essential role played by the huge crystal electric field in CeRh3B2

in its magnetic properties. Because of the large splitting, the influence of the second multiplet
of the Ce3+ ion state is not negligible. In particular, it leads to a lower value of the 4f moment,
associated with an enhancement of its spin part. This latter point could explain the abnormally
high Curie temperature of this compound.

Such high crystal field effects are related to the crystal structure of CeRh3B2, with very
short distances between cerium atoms along the c-direction, much shorter than in the c-plane.
This feature leads to very anisotropic properties and to strong hybridization between cerium 4f
and conduction electrons along that direction. A diffuse negative magnetic density is indeed
present along the c-chains in the ordered state and disappears on heating above the Curie
temperature.
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Appendix A. Calculation of the magnetic form factor for rare earth ions taking into
account several multiplets J

A.1. Formalism

The magnetic form factor of a 4f ion for neutron diffraction is obtained from the cross section
of the neutron due to the interaction of its spin with the magnetic field existing in the target.
This field is mainly due to the spin of the electrons and to the motion of their charges (spin and
orbital parts, respectively). This interaction can be evaluated from the matrix elements of the
operator Q̂⊥(κ) between the initial and final states |µ〉 and |µ′〉 of the target, using the tensor
operator method [15, 16]:

〈µ|Q̂⊥(κ)|µ′〉
with

Q̂⊥(κ) = κ̃ × Q̂(κ)× κ̃

where Q̂(κ) is an intermediate operator related to the magnetization density in direct space
and κ the scattering vector:

κ̃ = κ

|κ| .
With the assumption that the states of the neutrons can be described by plane waves exp(iκ ·r):

Q̂(κ) = exp(iκ · r)

(
ŝ − i

h̄|κ| κ̃ × p̂

)

where ŝ and p̂ are the spin and momentum operators for the electron.
The radial part of the 4f wavefunction f (r) is only present in the radial integrals 〈 jK (κ)〉,

where jK (κr) is a Bessel function:

〈 jK (κ)〉 =
∫ ∞

0
r2 dr | f (r)|2 jK (κr).
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They can be found in [17], as a result of a relativistic Dirac–Fock method which is well adapted
for the rare earth ions.

The n electrons of the configuration ln (l = 3 for rare earths) couple to give total S, L and
J . The summation over the n electrons and the transformation from one electron wavefunction
|lm〉 to |θ J M〉 is performed by Racah algebra [18], using parent states defined by S̄, L̄ and
coefficients of fractional parentage (cfp) [19] (see table A.1). θ = νSL, where the symbol ν
stands for any other quantum numbers that are needed when the set SMS L ML fails to define
the state uniquely. The wavefunction is then

|ψ〉 =
∑
J M

aJ M |θ J M〉.

The components Q̂⊥(κ)q are calculated from

〈θ J M|Q̂⊥(κ)q |θ ′ J ′M ′〉 = 〈
θ J M

∣∣ ∑
electrons

exp(iκ · r)

[
κ̃ × (ŝ × κ̃)− i

h̄|κ| κ̃ × p̂

]
q

|θ ′ J ′M ′〉

= (4π)1/2
∑
K K ′

{AJ,J ′(K , K ′) + BJ,J ′(K , K ′)}

×
∑
QQ′

Y Q
K (κ̃)〈K ′ Q′ J ′M ′|J M〉〈K QK ′ Q′|1q〉,

where AJ,J ′(K , K ′) is the orbital contribution, BJ,J ′(K , K ′) is the spin contribution, containing
both 3 j , 6 j , 9 j symbols and the summation over the parent states. 〈K ′ Q′ J ′M ′|J M〉 and
〈K QK ′ Q′|1q〉 are Clebsh–Gordan coefficients and Y Q

K (κ̃) a spherical harmonic. For rare
earths it is possible to consider only the lowest SL term. Then θ ′ = θ and S′ = S, L ′ =
L. The orbital contribution AJ J ′(K , K ′) can be expressed as a function of coefficients
aJ J ′(K , K ′) [16, 20]:

AJ,J ′(K , K ′) = aJ,J ′(K , K ′)[〈 jK ′−1(κ)〉 + 〈 jK ′+1(κ)〉].
The spin contribution is more complicated, especially when several multiplets are involved.
As for the orbital part it is possible to express BJ,J ′(K , K ′) as a function of coefficients
cJ J ′(K , K ′) [16, 20]:

• if K ′ is odd, then K = K ′ ± 1:

BJ,J ′(K ′ − 1, K ′) = iK ′−1

√
3(2K ′ + 1)

[
(K ′ + 1)cJ J ′(K ′ − 1, K ′)〈 jK ′−1(κ)〉

− √
K ′(K ′ + 1)cJ J ′(K ′ + 1, K ′)〈 jK ′+1(κ)〉

];
• if K ′ is even, then K = K ′:

BJ,J ′(K ′, K ′) = iK ′
√
(2K ′ + 1)

3
cJ J ′(K ′, K ′)〈 jK ′(κ)〉.

If only the ground multiplet is involved (J ′ = J ), BJ,J (K ′, K ′) is zero if K = K ′, due to the
9 j coefficient present in cJ J ′(K , K ′).

A.2. Calculations of aJ J ′ and cJ J ′ coefficients

The coefficients AJ J ′(K , K ′) and BJ J ′(K , K ′) are tabulated for J ′ = J in [20], and for
J ′ = J and J ′ = J + 1 (for light rare earths) or J ′ = J − 1 (for heavy rare earths) in [16].
For our calculations, which include several multiplets, we need the other coefficients. From
the complete formalism [15], we have written a program which can calculate the aJ J ′(K , K ′)
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Table A.1. Quantum numbers for ln , parent states (S̄ and L̄) for ln−1 and coefficients of fractional
parentage (cfp) [19] for Ce3+ and Sm3+.

Ion Config. S L J Ground state Parents S̄ L̄ cfp

Ce3+ 4f1 1/2 3 5/2 2F5/2
1S 1/2 0 1

Sm3+ 4f5 5/2 5 5/2 6H5/2
5D 2 2 −(2/(3 × 7))1/2
5F 2 3 −(1/(2 × 5))1/2
5G 2 4 −((3 × 13)/(2 × 7 × 11))1/2
5I 2 6 +((7 × 13)/(3 × 5 × 11))1/2

Table A.2. Coefficients A(K , K ′) and B(K , K ′) as a function of a(K , K ′) and c(K , K ′) for
f electrons.

K K ′ A(K , K ′) B(K ,K ′)

0 1 a(0, 1)[〈 j0〉 + 〈 j2〉] 2
3 c(0, 1)〈 j0〉 −

√
2

3 c(2, 1)〈 j2〉
2 1

√
1
2 a(0, 1)[〈 j0〉 + 〈 j2〉]

√
1
2

[
2
3 c(0, 1)〈 j0〉 −

√
2

3 c(2, 1)〈 j2〉
]

2 2 −
√

5
3 c(2, 2)〈 j2〉

2 3 a(2, 3)[〈 j2〉 + 〈 j4〉] − 4√
21

c(2, 3)〈 j2〉 + 2√
7

c(4, 3)〈 j4〉

4 3
√

3
4 a(2, 3)[〈 j2〉 + 〈 j4〉]

√
3
4

[
− 4√

21
c(2, 3)〈 j2〉 + 2√

7
c(4, 3)〈 j4〉

]

4 4
√

3c(4, 4)〈 j4〉
4 5 a(4, 5)[〈 j4〉 + 〈 j6〉] 6√

33
c(4, 5)〈 j4〉 −

√
10
11 c(6, 5)〈 j6〉

6 5
√

5
6 a(4, 5)[〈 j4〉 + 〈 j6〉]

√
5
6

[
6√
33

c(4, 5)〈 j4〉 −
√

10
11 c(6, 5)〈 j6〉

]

6 6 −
√

13
3 c(6, 6)〈 j6〉

6 7 — − 8√
45

c(6, 7)〈 j6〉

8 7 —
√

7
8

[
− 8√

45
c(6, 7)〈 j6〉

]

and cJ J ′(K , K ′) coefficients for the different rare earth ions, including the cfp and 3 j , 6 j and
9 j coefficients.

The calculation with several multiplets is always necessary for the Sm3+ ion, whereas for
the Ce3+ ion this calculation has to be done only in some special physical cases. These two ions
present the same ground multiplet J = 5/2 and this rather low value implies that, due to the
9 j coefficient present in cJ J ′(K , K ′), these coefficients are non-zero only if K ′ � J ′ + J . The
terms cJ J ′(6, 7) and then BJ J ′(6, 7) and BJ J ′(8, 7) are different from zero only for J + J ′ � 7.
But these two ions differ in their number of 4f electrons. In the case of Ce3+, only one
4f electron is present and there is then only one parent. For Sm3+, with five 4f electrons, four
parents must be taken into account (see table A.1). S and L not being the same for the two
ions, there are only two multiplets J = 3 ± 1/2 in Ce3+, and there are six multiplets between
J = 5 − 5/2 and 5 + 5/2 in Sm3+. We present coefficients calculated for both ions Ce3+ and
Sm3+ in tables A.2–A.5.

A.3. Form factor calculations using the wavefunction

We have written a program calculating the magnetic form factor of the ground state from
the wavefunction. It is a generalization of that previously developed [21] and it uses the
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Table A.3. Coefficients aJ,J ′(K , K ′) and cJ,J ′(K , K ′) for Ce3+ and Sm3+ ions for the two
multiplets 5/2 and 7/2. The coefficients in bold can also be obtained from those tabulated by
Balcar and Lovesey [16] and/or Lander and Brun [20].

Ce3+ ion Sm3+ ion

J J ′ K K ′ aJ,J ′(K , K ′) cJ,J ′(K , K ′) aJ,J ′(K , K ′) cJ,J ′ (K , K ′)

5/2 5/2 0 1 −1.126 87 0.422 58 −1.690 31 2.112 89
5/2 5/2 2 1 −0.796 82 0.478 09 −1.195 23 −0.345 29
5/2 5/2 2 2 — 0 — 0
5/2 5/2 2 3 −0.521 64 −0.239 05 0 0.172 64
5/2 5/2 4 3 −0.451 75 −0.690 07 0 −0.271 84
5/2 5/2 4 4 — 0 — 0
5/2 5/2 4 5 −0.217 31 0.104 03 0.085 61 0.040 98
5/2 5/2 6 5 −0.198 38 1.139 61 0.078 15 0.195 69
5/2 5/2 6 6 — 0 — 0
5/2 5/2 6 7 — 0 — 0

5/2 7/2 0 1 0.251 98 −0.755 93 0.690 07 −2.070 20
5/2 7/2 2 1 0.178 17 0.267 26 0.487 95 0.042 29
5/2 7/2 2 2 — 0.623 61 — −0.164 46
5/2 7/2 2 3 0.329 91 0.503 95 0 −0.292 38
5/2 7/2 4 3 0.285 71 −0.327 33 0 0.204 03
5/2 7/2 4 4 — −0.690 85 — −0.099 38
5/2 7/2 4 5 0.343 60 −0.394 77 −0.247 13 −0.151 43
5/2 7/2 6 5 0.313 67 0.300 31 −0.225 60 −0.433 10
5/2 7/2 6 6 — 0.940 13 — 0.058 95
5/2 7/2 6 7 — 0 — 0

7/2 5/2 0 1 −0.218 22 0.654 65 −0.597 61 1.792 84
7/2 5/2 2 1 −0.154 30 −0.231 46 −0.422 58 −0.036 62
7/2 5/2 2 2 — 0.540 06 — −0.142 42
7/2 5/2 2 3 −0.285 71 −0.436 44 0 0.253 21
7/2 5/2 4 3 −0.247 44 0.283 47 0 −0.176 70
7/2 5/2 4 4 — −0.598 29 — −0.086 06
7/2 5/2 4 5 −0.297 57 0.341 88 0.214 02 0.131 14
7/2 5/2 6 5 −0.271 64 −0.260 08 0.195 37 0.375 07
7/2 5/2 6 6 — 0.814 17 — 0.051 05
7/2 5/2 6 7 — 0 — 0

7/2 7/2 0 1 −1.133 89 −0.566 95 −1.553 85 0.692 93
7/2 7/2 2 1 −0.801 78 −0.267 26 −1.098 74 −0.293 39
7/2 7/2 2 2 — 0 — 0
7/2 7/2 2 3 −0.547 10 0.626 78 0 −0.141 56
7/2 7/2 4 3 −0.473 80 0.197 39 0 −0.200 44
7/2 7/2 4 4 — 0 — 0
7/2 7/2 4 5 −0.277 02 −0.795 69 −0.184 68 −0.227 19
7/2 7/2 6 5 −0.252 89 −0.111 75 −0.168 59 −0.099 78
7/2 7/2 6 6 — 0 — 0
7/2 7/2 6 7 — 1.236 82 — 0.220 88

aJ J ′(K , K ′) and cJ J ′(K , K ′) coefficients. The coefficients of the ground state wavefunction
can be refined by a least squares method from the measured form factor. However, this method
can be applied if only one level is populated: at high temperatures, where the population of
several levels is important, a formalism involving the diagonalization of the Hamiltonian has
then to be developed.
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Table A.4. Coefficients aJ,J ′(K , K ′) and cJ,J ′ (K , K ′) for a Sm3+ ion for the third multiplet
J = 9/2.

J J ′ K K ′ aJ,J ′(K , K ′) cJ,J ′(K , K ′)

5/2 9/2 0 1 0 0
5/2 9/2 2 1 0 0
5/2 9/2 2 2 — 0.123 36
5/2 9/2 2 3 0 0.227 88
5/2 9/2 4 3 0 −0.034 72
5/2 9/2 4 4 — 0.186 35
5/2 9/2 4 5 0.297 55 0.233 61
5/2 9/2 6 5 0.271 63 0.317 41
5/2 9/2 6 6 — −0.264 24
5/2 9/2 6 7 — −0.198 22

7/2 9/2 0 1 0.749 49 −2.248 46
7/2 9/2 2 1 0.529 97 −0.010 60
7/2 9/2 2 2 — −0.218 78
7/2 9/2 2 3 0 −0.157 16
7/2 9/2 4 3 0 0.156 46
7/2 9/2 4 4 — −0.099 68
7/2 9/2 4 5 −0.115 24 0.094 15
7/2 9/2 6 5 −0.105 20 −0.342 46
7/2 9/2 6 6 — −0.024 42
7/2 9/2 6 7 — −0.391 38

9/2 5/2 0 1 0 0
9/2 5/2 2 1 0 0
9/2 5/2 2 2 — −0.095 55
9/2 5/2 2 3 0 0.176 52
9/2 5/2 4 3 0 −0.026 90
9/2 5/2 4 4 — −0.144 35
9/2 5/2 4 5 0.230 48 0.180 95
9/2 5/2 6 5 0.210 40 0.245 87
9/2 5/2 6 6 — 0.204 68
9/2 5/2 6 7 — −0.153 54

9/2 7/2 0 1 −0.670 36 2.011 08
9/2 7/2 2 1 −0.474 02 0.009 48
9/2 7/2 2 2 — −0.195 68
9/2 7/2 2 3 0 0.140 57
9/2 7/2 4 3 0 −0.139 94
9/2 7/2 4 4 — −0.089 16
9/2 7/2 4 5 0.103 08 −0.084 21
9/2 7/2 6 5 0.094 10 0.306 30
9/2 7/2 6 6 — −0.021 85
9/2 7/2 6 7 — 0.350 06

9/2 9/2 0 1 −1.541 06 −0.351 76
9/2 9/2 2 1 −1.089 69 −0.225 52
9/2 9/2 2 2 — 0
9/2 9/2 2 3 0 −0.241 28
9/2 9/2 4 3 0 −0.212 76
9/2 9/2 4 4 — 0
9/2 9/2 4 5 −0.178 79 −0.186 76
9/2 9/2 6 5 −0.163 22 0.015 46
9/2 9/2 6 6 — 0
9/2 9/2 6 7 — −0.088 21
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Table A.5. Orbital contributions AJ J ′(K , K ′) and spin contributions BJ J ′(K , K ′) for the Ce3+

ion. The coefficients for 5/2, 5/2 and 5/2, 7/2 were tabulated by Balcar and Lovesey [16].

A(K , K ′) B(K ,K ′) A(K , K ′) B(K ,K ′) A(K , K ′) B(K , K ′) A(K , K ′) B(K , K ′)
J J ′ K K ′ 〈 j0〉 〈 j0〉 〈 j2〉 〈 j2〉 〈 j4〉 〈 j4〉 〈 j6〉 〈 j6〉
5/2 5/2 0 1 −1.126 87 0.281 72 −1.126 87 −0.225 37
5/2 5/2 2 1 −0.796 82 0.199 20 −0.796 82 −0.159 36
5/2 5/2 2 2 — 0
5/2 5/2 2 3 −0.521 64 0.208 66 −0.521 64 −0.521 64
5/2 5/2 4 3 −0.451 75 0.180 70 −0.451 75 −0.451 75
5/2 5/2 4 4 — 0
5/2 5/2 4 5 −0.217 31 0.108 66 −0.217 31 −1.086 57
5/2 5/2 6 5 −0.198 38 0.099 19 −0.198 38 −0.991 90
5/2 5/2 6 6 — 0

5/2 7/2 0 1 0.251 98 −0.503 95 0.251 98 −0.125 99
5/2 7/2 2 1 0.178 17 −0.356 35 0.178 17 −0.089 09
5/2 7/2 2 2 — −0.805 08
5/2 7/2 2 3 0.329 91 −0.439 89 0.329 91 −0.247 44
5/2 7/2 4 3 0.285 71 −0.380 95 0.285 71 −0.214 29
5/2 7/2 4 4 — −1.196 59
5/2 7/2 4 5 0.343 60 −0.412 32 0.343 60 −0.286 34
5/2 7/2 6 5 0.313 67 −0.376 40 0.313 67 −0.261 39
5/2 7/2 6 6 — −1.957 03

7/2 5/2 0 1 −0.218 22 0.436 44 −0.218 22 0.109 11
7/2 5/2 2 1 −0.154 30 0.308 61 −0.154 30 0.077 15
7/2 5/2 2 2 — −0.697 22
7/2 5/2 2 3 −0.285 71 0.380 95 −0.285 71 0.214 29
7/2 5/2 4 3 −0.247 44 0.329 91 −0.247 44 0.185 58
7/2 5/2 4 4 0 −1.036 27
7/2 5/2 4 5 −0.297 57 0.357 08 −0.297 57 0.247 97
7/2 5/2 6 5 −0.271 64 0.325 97 −0.271 64 0.226 37
7/2 5/2 6 6 — −1.694 84

7/2 7/2 0 1 −1.133 89 −0.377 96 −1.133 89 0.125 99
7/2 7/2 2 1 −0.801 78 −0.267 26 −0.801 78 0.089 09
7/2 7/2 2 2 — 0
7/2 7/2 2 3 −0.547 10 −0.547 10 −0.547 10 0.149 21
7/2 7/2 4 3 −0.473 80 −0.473 80 −0.473 80 0.129 22
7/2 7/2 4 4 0 0
7/2 7/2 4 5 −0.277 02 −0.831 07 −0.277 02 0.106 55
7/2 7/2 6 5 −0.252 89 −0.758 66 −0.252 89 0.097 26
7/2 7/2 6 6 — 0
7/2 7/2 6 7 −1.474 99
7/2 7/2 8 7 −1.379 73

A.4. Form factor calculations using the Hamiltonian

We have also written a double-precision program calculating the magnetic form factor at
any temperature using the complete Hamiltonian of appendix B. Starting from the spin–orbit
coupling, from the crystal field parameters, from the exchange and applied fields, the energy
levels and the wavefunctions are obtained by diagonalization. The magnetic form factor is
then calculated for each level using the coefficients aJ J ′(K , K ′) and cJ J ′(K , K ′) previously
obtained, and finally a thermal averaging is performed. A comparison between calculated and
observed form factors leads to a refinement, by a least squares method, of the parameters of
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the Hamiltonian. The calculations have been tested by a comparison to the results of ones
performed in 1978 with the SCAMAG program [22] for Sm compounds [23].

Appendix B. Matrix elements of the Hamiltonian for rare earth ions in the case of J

mixing

B.1. Formalism

To calculate physical variables, such as the moment and form factor, it is necessary to obtain the
wavefunctions and the energies of the different levels by diagonalizing the total Hamiltonian,
which can be written as the summation of four terms:

H = HSO + HCF + HEx + HAp

with

HSO : spin–orbit coupling term,

HCF : crystal field term,

HEx : exchange term,

HAp : Zeeman term (applied field).

B.2. The spin–orbit coupling Hamiltonian

HSO = λL · S.

The corresponding matrix is rather simple, diagonal (non-zero only if J = J ′ and M = M ′)
and independent of M . The coefficient λ is related to the splitting between the multiplets:

〈θ J M|λL · S|θ J ′M ′〉 = (1/2)λ[J (J + 1)− L(L + 1)− S(S + 1)].

B.3. The crystal field Hamiltonian

In order to include several multiplets, the method of the Stevens operators [24] set up for the
calculation of matrix elements within the ground J multiplet is no longer convenient, and a
more general approach has been developed. The crystal field potential V at a rare earth ion
site can be expressed as [25]

V =
∑
k,q

V q
k =

∑
k,q

Aq
k 〈rk〉Y q

k (θ, φ)

where Y q
k (θ, φ) is a spherical harmonic, 〈rk〉 is the mean value of the kth power of the 4f electron

radius, Aq
k are parameters related to the strength of the crystal field. It is possible to define

U q
k = (4π/(2k + 1))1/2Y q

k .

It as been shown [26] that the crystal field matrix elements of a configuration fn can be
calculated by the tensor operator techniques of Racah [18] (for one SL term) in terms of 3 j
and 6 j symbols:

〈θ J M|U q
k |θ J ′M ′〉 = δ(SS′)(−1)M+S+L[(2J + 1)(2J ′ + 1)]1/2

×
(

J k J ′
−M q M ′

) {
L J S
J ′ L k

}
〈νSL‖Uk‖νSL〉.

If we use the normalization factors Nq
k , the Aq

k coefficients are similar to those involved in the
Stevens formalism [24], and

HCF =
∑
k,q

Nq
k Aq

k 〈rk〉U q
k =

∑
k,q

Nq
k Bq

k U q
k .
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The Nq
k coefficients and the reduced matrix elements 〈νSL‖Uk‖νSL〉 are tabulated in [25] but

some errors seem to be present in that reference (appendix B.6).

B.4. The exchange Hamiltonian

The third term describes the effect of the exchange via the interionic exchange parameter Jff

acting on the spin operator S:

HEx = −2Jff〈S〉S.
The reference [27] gives the matrix elements for Sz and Sx :

〈θ J M|Sz |θ J ′M ′〉 = (−1)J−M+L+S+J ′+1[(2J + 1)(2J ′ + 1)]1/2

×
(

J 1 J ′
−M 0 M ′

) {
S S 1
J J ′ L

}
[S(S + 1)(2S + 1)]1/2,

〈θ J M|Sx |θ J ′M ′〉 = (−1)J−M+L+S+J ′+1[(2J + 1)(2J ′ + 1)]1/2

× 1√
2

[(
J 1 J ′

−M −1 M ′

)
−

(
J 1 J ′

−M +1 M ′

)]{
S S 1
J J ′ L

}

× [S(S + 1)(2S + 1)]1/2.

With the relations

S+ = Sx + iSy, Sx = (1/2)(S− + S+),

S− = Sx − iSy, Sy = (i/2)(S− − S+),

it is then easy to obtain the matrix elements of Sy , S+, and S−:

〈θ J M|Sy |θ J ′M ′〉 = i(−1)J−M+L+S+J ′+1[(2J + 1)(2J ′ + 1)]1/2

× 1√
2

[(
J 1 J ′

−M −1 M ′

)
+

(
J 1 J ′

−M +1 M ′

)] {
S S 1
J J ′ L

}

× [S(S + 1)(2S + 1)]1/2,

〈θ J M|S+|θ J ′M ′〉 = −√
2(−1)J−M+L+S+J ′+1[(2J + 1)(2J ′ + 1)]1/2

×
(

J 1 J ′
−M +1 M ′

) {
S S 1
J J ′ L

}
[S(S + 1)(2S + 1)]1/2,

〈θ J M|S−|θ J ′M ′〉 = √
2(−1)J−M+L+S+J ′+1[(2J + 1)(2J ′ + 1)]1/2

×
(

J 1 J ′
−M −1 M ′

) {
S S 1
J J ′ L

}
[S(S + 1)(2S + 1)]1/2.

B.5. The Zeeman Hamiltonian

The fourth term describes the effect of the applied field HAp acting on the moment operator:

HAp = µBHAp · (L + 2S).

The reference [27] gives the matrix elements for Lz:

〈θ J M|Lz |θ J ′M ′〉 = (−1)J−M+L+S+J +1[(2J + 1)(2J ′ + 1)]1/2

×
(

J 1 J ′
−M 0 M ′

) {
L L 1
J J ′ S

}
[L(L + 1)(2L + 1)]1/2.
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Table B.1. Modified sixth-order reduced matrix elements of the lowest SL term.

Ion Ground term 〈νSL‖U6‖νSL〉
Pr3+ 3H ∓(1/3)(5 × 17/7)1/2

Tm3+

Sm3+ 6H ±(1/3)(5 × 17/7)1/2

Dy3+

As in the case of the spin, it is easy to obtain the expressions for L+, L−, Lx and L y , and then
those for Jz , Jx and Jy .

B.6. Diagonalization of the total Hamiltonian

A double-precision program diagonalizes the complex matrix of the total Hamiltonian. The
field can be applied in any direction, and the self-consistency of the moments is achieved
for any component. Some physical observables, such as magnetization, hyperfine field and
neutron transitions can be calculated.

On comparing the formalisms of [25] and [27],a disagreement appears concerning the sign
of the coefficients 〈νSL‖U6‖νSL〉 for Pr3+, Sm3+, Dy3+ and Tm3+. Testing the calculations
for a single multiplet J with a previous program, and comparing with calculations performed
on Sm compounds [23], we agree with the formalism of [27]. The reduced elements are those
of table B.1. Moreover, these tests demonstrate that the N2

2 coefficient in [25] is half its real
value and the exact value should be

N2
2 = −4(7/3 × 5)1/2 × (2 × 3)1/2.

References

[1] Dhar S K, Malik S K and Vijayaraghavan R 1981 J. Phys. C: Solid State Phys. 14 L321
[2] Kasaya M, Okabe A, Takahashi T, Satoh T, Kasuya T and Fujimori A 1988 J. Magn. Magn. Mater. 76/77 347
[3] Galatanu A, Yamamoto E, Okubo T, Yamada M, Thamizhavel A, Takeuchi T, Sugiyama K, Inada Y and
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